The elongation rate of RNA polymerase II in zebrafish and its significance in the somite segmentation clock.

نویسندگان

  • Anja Hanisch
  • Maxine V Holder
  • Suma Choorapoikayil
  • Martin Gajewski
  • Ertugrul M Özbudak
  • Julian Lewis
چکیده

A gene expression oscillator called the segmentation clock controls somite segmentation in the vertebrate embryo. In zebrafish, the oscillatory transcriptional repressor genes her1 and her7 are crucial for genesis of the oscillations, which are thought to arise from negative autoregulation of these genes. The period of oscillation is predicted to depend on delays in the negative-feedback loop, including, most importantly, the transcriptional delay - the time taken to make each molecule of her1 or her7 mRNA. her1 and her7 operate in parallel. Loss of both gene functions, or mutation of her1 combined with knockdown of Hes6, which we show to be a binding partner of Her7, disrupts segmentation drastically. However, mutants in which only her1 or her7 is functional show only mild segmentation defects and their oscillations have almost identical periods. This is unexpected because the her1 and her7 genes differ greatly in length. We use transgenic zebrafish to measure the RNA polymerase II elongation rate, for the first time, in the intact embryo. This rate is unexpectedly rapid, at 4.8 kb/minute at 28.5°C, implying that, for both genes, the time taken for transcript elongation is insignificant compared with other sources of delay, explaining why the mutants have similar clock periods. Our computational model shows how loss of her1 or her7 can allow oscillations to continue with unchanged period but with reduced amplitude and impaired synchrony, as manifested in the in situ hybridisation patterns of the single mutants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell cycle progression is required for zebrafish somite morphogenesis but not segmentation clock function.

Cell division, differentiation and morphogenesis are coordinated during embryonic development, and frequently are in disarray in pathologies such as cancer. Here, we present a zebrafish mutant that ceases mitosis at the beginning of gastrulation, but that undergoes axis elongation and develops blood, muscle and a beating heart. We identify the mutation as being in early mitotic inhibitor 1 (emi...

متن کامل

Etude De La Somitogenese Chez Le Serpent Des Bles

The vertebrate body plan is organized in a segmented fashion, best illustrated by the repetition of the vertebrae. The first signs of segmentation arise during early embryogenesis when somites bud off in a rhythmic fashion from the anterior part of the presomitic mesoderm (PSM). The periodic formation of somites is proposed to be controlled by a molecular oscillator–the segmentation clock–actin...

متن کامل

An anterior limit of FGF/Erk signal activity marks the earliest future somite boundary in zebrafish.

Vertebrate segments called somites are generated by periodic segmentation of the anterior extremity of the presomitic mesoderm (PSM). During somite segmentation in zebrafish, mesp-b determines a future somite boundary at position B-2 within the PSM. Heat-shock experiments, however, suggest that an earlier future somite boundary exists at B-5, but the molecular signature of this boundary remains...

متن کامل

A Notch feeling of somite segmentation and beyond.

Vertebrate segmentation is manifested during embryonic development as serially repeated units termed somites that give rise to vertebrae, ribs, skeletal muscle and dermis. Many theoretical models including the "clock and wavefront" model have been proposed. There is compelling genetic evidence showing that Notch-Delta signaling is indispensable for somitogenesis. Notch receptor and its target g...

متن کامل

Setting the Tempo in Development: An Investigation of the Zebrafish Somite Clock Mechanism

The somites of the vertebrate embryo are clocked out sequentially from the presomitic mesoderm (PSM) at the tail end of the embryo. Formation of each somite corresponds to one cycle of oscillation of the somite segmentation clock--a system of genes whose expression switches on and off periodically in the cells of the PSM. We have previously proposed a simple mathematical model explaining how th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 140 2  شماره 

صفحات  -

تاریخ انتشار 2013